Теоремы сложения и умножения вероятностей. Зависимые и независимые события

Пусть вероятность события В не зависит от появления события А .

Определение. Событие В называют независимым от события А , если появление события А не изменяет вероятности события В , т.е. если условная вероятность события В равна его безусловной вероятности:

Р А (В ) = Р (В ). (2.12)

Подставив (2.12) в соотношение (2.11), получим

Р (А )Р (В ) = Р (В )Р В (А ).

Р В (А ) = Р (А ),

т.е. условная вероятность события А в предположении, что наступило событие В , равна его безусловной вероятности. Другими словами, событие А не зависит от события B .

Лемма (о взаимной независимости событий) : если событие В не зависит от события А , то и событие А не зависит от события В ; это означает, что свойство независимости событий взаимно .

Для независимых событий теорема умножения Р (АВ ) = Р (А ) Р А (В ) имеет вид

Р (АВ ) = Р (А ) Р (В ), (2.13)

т.е. вероятность совместного появления двух независимых событий равна произведению вероятностей этих событий.

Равенство (2.13) принимают в качестве определения независимых событий. Два события называются независимыми, если появление одного из них не меняет вероятность появления другого.

Определение. Два события называют независимыми , если вероятность их совмещения равна произведению вероятностей этих событий; в противном случае события называют зависимыми .

На практике о независимости событий заключают по смыслу задачи. Например, вероятности поражения цели каждым из двух орудий не зависят от того, поразило ли цель другое орудие, поэтому события «первое орудие поразило цель» и «второе орудие поразило цель» независимы.

Пример . Найти вероятность совместного поражения цели двумя орудиями, если вероятность поражения цели первым орудием (событие А ) равна 0,8, а вторым (событие В ) – 0,7.

Решение. События А и В независимые, поэтому, по теореме умножения, искомая вероятность

Р (АВ ) = Р (А )Р (В ) = 0,7 ×0,8 = 0,56.

Замечание 1. Если события А и В независимы, то независимы также события А и , и В , и . Действительно,

Следовательно,

, или .

, или .

т.е. события А и В независимы.

Независимость событий и В , и – следствие доказанного утверждения.

Понятие независиомости может быть распространено на случай n событий.

Определение. Несколько событий называют попарно независимыми , если каждые два из них независимы. Например, события А , В , С попарно независимы, если независимы события А и В , А и С , В и С .

Для того чтобы обобщить теорему умножения на несколько событий, введем понятие независимости событий в совокупности.

Определение. Несколько событий называют независимыми в совокупности (или просто независимыми), если независимы каждые два из них и независимы каждое событие и все возможные произведения остальных. Например, если события А 1 , A 2 , А 3 независимы в совокупности, то независимы события А 1 и A 2 , А 1 и А 3 , A 2 и А 3 ; А 1 и A 2 А 3 , A 2 и А 1 А 3 , А 3 и А 1 A 2 . Из сказанного следует, что если события независимы в совокупности, то условная вероятность появления любого события из них, вычисленная в предположении, что наступили какие-либо другие события из числа остальных, равна его безусловной вероятности.



Подчеркнем, что если несколько событий независимы попарно, то отсюда еще не следует их независимость в совокупности. В этом смысле требование независимости событий в совокупности сильнее требования их попарной независимости.

Поясним сказанное на примере. Пусть в урне имеется 4 шара, окрашенные: один – в красный цвет (А ), один – в синий цвет (В ), один – в черный цвет (С ) и один –во все эти три цвета (АВС ). Чему равна вероятность того, что извлеченный из урны шар имеет красный цвет?

Так как из четырех шаров два имеют красный цвет, то Р (А ) = 2/4 = 1/2. Рассуждая аналогично, найдем Р (В ) = 1/2, Р (С ) = 1/2. Допустим теперь, что взятый шар имеет синий цвет, т.е. событие В уже произошло. Изменится ли вероятность того, что извлеченный шар имеет красный цвет, т.е. изменится ли вероятность события А ? Из двух шаров, имеющих синий цвет, один шар имеет и красный цвет, поэтому вероятность события А по-прежнему равна 1/2. Другими словами, условная вероятность события А , вычисленная в предположении, что наступило событие В , равна его безусловной вероятности. Следовательно, события А и В независимы. Аналогично придем к выводу, что события А и С , В и С независимы. Итак, события А , В и С попарно независимы.

Независимы ли эти события в совокупности? Оказывается, нет. Действительно, пусть извлеченный шар имеет два цвета, например синий и черный. Чему равна вероятность того, что этот шар имеет и красный цвет? Лишь один шар окрашен во все три цвета, поэтому взятый шар имеет и красный цвет. Таким образом, допустив, что события В и С произошли, приходим к выводу, что событие А обязательно наступит. Следовательно, это событие достоверное и вероятность его равна единице. Другими словами, условная вероятность Р ВС (А )= 1 события А не равна его безусловной вероятности Р (А ) = 1/2. Итак, попарно независимые события А , В , С не являются независимыми в совокупности.

Приведем теперь следствие из теоремы умножения.

Следствие. Вероятность совместного появления нескольких событий, независимых в совокупности, равна произведению вероятностей этих событий:

Доказательство. Рассмотрим три события: А , В и С . Совмещение событий А , В и С равносильно совмещению событий АВ и С , поэтому

Р (АВС ) = Р (АВ×С ).

Так как события А , В и С независимы в совокупности, то независимы, в частности, события АВ и С , а также А и В . По теореме умножения для двух независимых событий имеем:

Р (АВ×С ) = Р (АВ )Р (С ) и Р (АВ ) = Р (А )Р (В ).

Итак, окончательно получим

Р (АВС ) = Р (А )Р (В )Р (С ).

Для произвольного n доказательство проводится методом математической индукции.

Замечание. Если события А 1 , А 2 , ...,А n независимы в совокупности, то и противоположные им события также независимы в совокупности.

Пример. Найти вероятность совместного появления герба при одном бросании двух монет.

Решение. Вероятность появления герба первой монеты (событие А )

Р (А ) = 1/2.

Вероятность появления герба второй монеты (событие В )

Р (В ) = 1/2.

События А и В независимые, поэтому искомая вероятность по теореме умножения равна

Р (АВ ) = Р (А )Р (В ) = 1/2 ×1/2 = 1/4.

Пример. Имеется 3 ящика, содержащих по 10 деталей. В первом ящике 8, во втором 7 и в третьем 9 стандартных деталей. Из каждого ящика наудачу вынимают по одной детали. Найти вероятность того, что все три вынутые детали окажутся стандартными.

Решение. Вероятность того, что из первого ящика вынута стандартная деталь (событие А ),

Р (А ) = 8/10 = 0,8.

Вероятность того, что из второго ящика вынута стандартная деталь (событие В ),

Р (В ) = 7/10 = 0,7.

Вероятность того, что из третьего ящика вынута стандартная деталь (событие С ),

Р (С ) = 9/10 = 0,9.

Так как события А , В и С независимые в совокупности, то искомая вероятность (по теореме умножения) равна

Р (АВС ) = Р (А )Р (В )Р (С ) = 0,8×0,7×0,9 = 0,504.

Приведем пример совместного применения теорем сложения и умножения.

Пример. Вероятности появления каждого из трех независимых событий А 1 , А 2 , А 3 соответственно равны р 1 , р 2 , р 3 . Найти вероятность появления только одного из этих событий.

Решение . Заметим, что, например, появление только первого события А 1 равносильно появлению события (появилось первое и не появились второе и третье события). Введем обозначения:

B 1 – появилось только событие А 1 , т.е. ;

B 2 – появилось только событие А 2 , т.е. ;

B 3 – появилось только событие А 3 , т.е. .

Таким образом, чтобы найти вероятность появления только одного из событий А 1 , А 2 , А 3 , будем искать вероятность P (B 1 + B 2 + В 3) появления одного, безразлично какого из событий В 1 , В 2 , В 3 .

Так как события В 1 , В 2 , В 3 несовместны, то применима теорема сложения

P (B 1 + B 2 + В 3) = Р (В 1) + Р (В 2) + Р (В 3). (*)

Остается найти вероятности каждого из событий В 1 , В 2 , В 3 . События А 1 , А 2 , А 3 независимы, следовательно, независимы события , поэтому к ним применима теорема умножения

Аналогично,

Подставив эти вероятности в (*), найдем искомую вероятность появления только одного из событий А 1 , А 2 , А 3.

Общая постановка задачи: известны вероятности некоторых событий, а вычислить нужно вероятности других событий, которые связаны с данными событиями. В этих задачах возникает необходимость в таких действиях над вероятностями, как сложение и умножение вероятностей.

Например, на охоте проиведены два выстрела. Событие A - попадание в утку с первого выстрела, событие B - попадание со второго выстрела. Тогда сумма событий A и B - попадание с первого или второго выстрела или с двух выстрелов.

Задачи другого типа. Даны несколько событий, например, монета подбрасывается три раза. Требуется найти вероятность того, что или все три раза выпадет герб, или того, что герб выпадет хотя бы один раз. Это задача на умножение вероятностей.

Сложение вероятностей несовместных событий

Сложение вероятностей используется тогда, когда нужно вычислить вероятность объединения или логической суммы случайных событий.

Сумму событий A и B обозначают A + B или A B . Суммой двух событий называется событие, которое наступает тогда и только тогда, когда наступает хотя бы одно из событий. Это означает, что A + B – событие, которое наступает тогда и только тогда, когда при наблюдении произошло событие A или событие B , или одновременно A и B .

Если события A и B взаимно несовместны и их вероятности даны, то вероятность того, что в результате одного испытания произойдёт одно из этих событий, рассчитывают, используя сложение вероятностей.

Теорема сложения вероятностей. Вероятность того, что произойдёт одно из двух взаимно несовместных событий, равна сумме вероятностей этих событий:

Например, на охоте произведены два выстрела. Событие А – попадание в утку с первого выстрела, событие В – попадание со второго выстрела, событие (А + В ) – попадание с первого или второго выстрела или с двух выстрелов. Итак, если два события А и В – несовместные события, то А + В – наступление хотя бы одного из этих событий или двух событий.

Пример 1. В ящике 30 мячиков одинаковых размеров: 10 красных, 5 синих и 15 белых. Вычислить вероятность того, что не глядя будет взят цветной (не белый) мячик.

Решение. Примем, что событие А – «взят красный мячик», а событие В – «взят синий мячик». Тогда событие - «взят цветной (не белый) мячик». Найдём вероятность события А :

и события В :

События А и В – взаимно несовместные, так как если взят один мячик, то нельзя взять мячики разных цветов. Поэтому используем сложение вероятностей:

Теорема сложения вероятностей для нескольких несовместных событий. Если события составляют полное множество событий, то сумма их вероятностей равна 1:

Сумма вероятностей противоположных событий также равна 1:

Противоположные события образуют полное множество событий, а вероятность полного множества событий равна 1.

Вероятности противоположных событий обычно обозначают малыми буквами p и q . В частности,

из чего следуют следующие формулы вероятности противоположных событий:

Пример 2. Цель в тире разделена на 3 зоны. Вероятность того что некий стрелок выстрелит в цель в первой зоне равна 0,15, во второй зоне – 0,23, в третьей зоне – 0,17. Найти вероятность того, что стрелок попадет в цель и вероятность того, что стрелок попадёт мимо цели.

Решение: Найдём вероятность того, что стрелок попадёт в цель:

Найдём вероятность того, что стрелок попадёт мимо цели:

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей - на странице "Различные задачи на сложение и умножение вероятностей" .

Сложение вероятностей взаимно совместных событий

Два случайных события называются совместными, если наступление одного события не исключает наступления второго события в том же самом наблюдении. Например, при бросании игральной кости событием А считается выпадение числа 4, а событием В – выпадение чётного числа. Поскольку число 4 является чётным числом, эти два события совместимы. В практике встречаются задачи по расчёту вероятностей наступления одного из взаимно совместных событий.

Теорема сложения вероятностей для совместных событий. Вероятность того, что наступит одно из совместных событий, равна сумме вероятностей этих событий, из которой вычтена вероятность общего наступления обоих событий, то есть произведение вероятностей. Формула вероятностей совместных событий имеет следующий вид:

Поскольку события А и В совместимы, событие А + В наступает, если наступает одно из трёх возможных событий: или АВ . Согласно теореме сложения несовместных событий, вычисляем так:

Событие А наступит, если наступит одно из двух несовместных событий: или АВ . Однако вероятность наступления одного события из нескольких несовместных событий равна сумме вероятностей всех этих событий:

Аналогично:

Подставляя выражения (6) и (7) в выражение (5), получаем формулу вероятности для совместных событий:

При использовании формулы (8) следует учитывать, что события А и В могут быть:

  • взаимно независимыми;
  • взаимно зависимыми.

Формула вероятности для взаимно независимых событий:

Формула вероятности для взаимно зависимых событий:

Если события А и В несовместны, то их совпадение является невозможным случаем и, таким образом, P (AB ) = 0. Четвёртая формула вероятности для несовместных событий такова:

Пример 3. На автогонках при заезде на первой автомашине вероятность победить , при заезде на второй автомашине . Найти:

  • вероятность того, что победят обе автомашины;
  • вероятность того, что победит хотя бы одна автомашина;

1) Вероятность того, что победит первая автомашина, не зависит от результата второй автомашины, поэтому события А (победит первая автомашина) и В (победит вторая автомашина) – независимые события. Найдём вероятность того, что победят обе машины:

2) Найдём вероятность того, что победит одна из двух автомашин:

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей - на странице "Различные задачи на сложение и умножение вероятностей" .

Решить задачу на сложение вероятностей самостоятельно, а затем посмотреть решение

Пример 4. Бросаются две монеты. Событие A - выпадение герба на первой монете. Событие B - выпадение герба на второй монете. Найти вероятность события C = A + B .

Умножение вероятностей

Умножение вероятностей используют, когда следует вычислить вероятность логического произведения событий.

При этом случайные события должны быть независимыми. Два события называются взаимно независимыми, если наступление одного события не влияет на вероятность наступления второго события.

Теорема умножения вероятностей для независимых событий. Вероятность одновременного наступления двух независимых событий А и В равна произведению вероятностей этих событий и вычисляется по формуле:

Пример 5. Монету бросают три раза подряд. Найти вероятность того, что все три раза выпадет герб.

Решение. Вероятность того, что при первом бросании монеты выпадет герб , во второй раз , в третий раз . Найдём вероятность того, что все три раза выпадет герб:

Решить задачи на умножение вероятностей самостоятельно, а затем посмотреть решение

Пример 6. Имеется коробка с девятью новыми теннисными мячами. Для игры берут три мяча, после игры их кладут обратно. При выборе мячей игранные от неигранных не отличают. Какова вероятность того, что после трёх игр в коробке не останется неигранных мячей?

Пример 7. 32 буквы русского алфавита написаны на карточках разрезной азбуки. Пять карточек вынимаются наугад одна за другой и укладываются на стол в порядке появления. Найти вероятность того, что из букв получится слово "конец".

Пример 8. Из полной колоды карт (52 листа) вынимаются сразу четыре карты. Найти вероятность того, что все эти четыре карты будут разных мастей.

Пример 9. Та же задача, что в примере 8, но каждая карта после вынимания возвращается в колоду.

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей, а также вычислять произведение нескольких событий - на странице "Различные задачи на сложение и умножение вероятностей" .

Вероятность того, что произойдёт хотя бы одно из взаимно независимых событий , можно вычислить путём вычитания из 1 произведения вероятностей противоположных событий , то есть по формуле.

Независимые события

При практическом применении вероятностно-статистических методов принятия решений постоянно используется понятие независимости. Например, при применении статистических методов управления качеством продукции говорят о независимых измерениях значений контролируемых параметров у включенных в выборку единиц продукции, о независимости появления дефектов одного вида от появления дефектов другого вида, и т.д. Независимость случайных событий понимается в вероятностных моделях в следующем смысле.

Определение 2. События А и В называются независимыми, если Р(АВ) = Р(А) Р(В). Несколько событий А , В , С ,… называются независимыми, если вероятность их совместного осуществления равна произведению вероятностей осуществления каждого из них в отдельности: Р (АВС …) = Р (А )Р (В )Р (С )…

Это определение соответствует интуитивному представлению о независимости: осуществление или неосуществление одного события не должно влиять на осуществление или неосуществление другого. Иногда соотношение Р (АВ ) = Р (А ) Р (В |A ) = P (B )P (A |B ), справедливое при P (A )P (B) > 0, называют также теоремой умножения вероятностей.

Утверждение 1. Пусть события А и В независимы. Тогда события и независимы, события и В независимы, события А и независимы (здесь - событие, противоположное А , и - событие, противоположное В ).

Действительно, из свойства в) в (3) следует, что для событий С и D , произведение которых пусто, P (C + D ) = P (C ) + P (D ). Поскольку пересечение АВ и В пусто, а объединение есть В , то Р(АВ) + Р(В) = Р(В). Так как А и В независимы, то Р(В) = Р(В) - Р(АВ) = Р(В) - Р(А)Р(В) = Р(В)(1 - Р(А)). Заметим теперь, что из соотношений (1) и (2) следует, что Р() = 1 – Р(А). Значит, Р(В) = Р()Р(В).

Вывод равенства Р(А) = Р(А)Р() отличается от предыдущего лишь заменой всюду А на В , а В на А .

Для доказательства независимости и воспользуемся тем, что события АВ, В, А, не имеют попарно общих элементов, а в сумме составляют все пространство элементарных событий. Следовательно, Р (АВ) + Р(В) + Р(А) + Р() = 1. Воспользовавшись ранее доказанными соотношениями, получаем, что Р(В)= 1 - Р (АВ) - Р(В)(1 - Р(А)) - Р(А)(1 - Р(В))= (1 – Р(А))(1 – Р(В)) = Р()Р(), что и требовалось доказать.

Пример 3. Рассмотрим опыт, состоящий в бросании игрального кубика, на гранях которого написаны числа 1, 2, 3, 4, 5,6. Считаем, что все грани имеют одинаковые шансы оказаться наверху. Построим соответствующее вероятностное пространство. Покажем, что события «наверху – грань с четным номером» и «наверху – грань с числом, делящимся на 3» являются независимыми.

Разбор примера. Пространство элементарных исходов состоит из 6 элементов: «наверху – грань с 1», «наверху – грань с 2»,…, «наверху – грань с 6». Событие «наверху – грань с четным номером» состоит из трех элементарных событий – когда наверху оказывается 2, 4 или 6. Событие «наверху – грань с числом, делящимся на 3» состоит из двух элементарных событий – когда наверху оказывается 3 или 6. Поскольку все грани имеют одинаковые шансы оказаться наверху, то все элементарные события должны иметь одинаковую вероятность. Поскольку всего имеется 6 элементарных событий, то каждое из них имеет вероятность 1/6. По определению 1событие «наверху – грань с четным номером» имеет вероятность ½, а событие «наверху – грань с числом, делящимся на 3» - вероятность 1/3. Произведение этих событий состоит из одного элементарного события «наверху – грань с 6», а потому имеет вероятность 1/6. Поскольку 1/6 = ½ х 1/3, то рассматриваемые события являются независимыми в соответствии с определением независимости.

Теоремы сложения и умножения вероятностей.
Зависимые и независимые события

Заголовок выглядит страшновато, но в действительности всё очень просто. На данном уроке мы познакомимся с теоремами сложения и умножения вероятностей событий, а также разберём типовые задачи, которые наряду с задачей на классическое определение вероятности обязательно встретятся или, что вероятнее, уже встретились на вашем пути. Для эффективного изучения материалов этой статьи необходимо знать и понимать базовые термины теории вероятностей и уметь выполнять простейшие арифметические действия. Как видите, требуется совсем немного, и поэтому жирный плюс в активе практически гарантирован. Но с другой стороны, вновь предостерегаю от поверхностного отношения к практическим примерам – тонкостей тоже хватает. В добрый путь:

Теорема сложения вероятностей несовместных событий : вероятность появления одного из двух несовместных событий или (без разницы какого) , равна сумме вероятностей этих событий:

Аналогичный факт справедлив и для бОльшего количества несовместных событий, например, для трёх несовместных событий и :

Теорема-мечта =) Однако, и такая мечта подлежит доказательству, которое можно найти, например, в учебном пособии В.Е. Гмурмана.

Знакомимся с новыми, до сих пор не встречавшимися понятиями:

Зависимые и независимые события

Начнём с независимых событий. События являются независимыми , если вероятность наступления любого из них не зависит от появления/непоявления остальных событий рассматриваемого множества (во всех возможных комбинациях). …Да чего тут вымучивать общие фразы:

Теорема умножения вероятностей независимых событий : вероятность совместного появления независимых событий и равна произведению вероятностей этих событий:

Вернёмся к простейшему примеру 1-го урока, в котором подбрасываются две монеты и следующим событиям:

– на 1-й монете выпадет орёл;
– на 2-й монете выпадет орёл.

Найдём вероятность события (на 1-й монете появится орёл и на 2-й монете появится орёл – вспоминаем, как читается произведение событий !) . Вероятность выпадения орла на одной монете никак не зависит от результата броска другой монеты, следовательно, события и независимы.

Аналогично:
– вероятность того, что на 1-й монете выпадет решка и на 2-й решка;
– вероятность того, что на 1-й монете появится орёл и на 2-й решка;
– вероятность того, что на 1-й монете появится решка и на 2-й орёл.

Заметьте, что события образуют полную группу и сумма их вероятностей равна единице: .

Теорема умножения очевидным образом распространяется и на бОльшее количество независимых событий, так, например, если события независимы, то вероятность их совместного наступления равна: . Потренируемся на конкретных примерах:

Задача 3

В каждом из трех ящиков имеется по 10 деталей. В первом ящике 8 стандартных деталей, во втором – 7, в третьем – 9. Из каждого ящика наудачу извлекают по одной детали. Найти вероятность того, что все детали окажутся стандартными.

Решение : вероятность извлечения стандартной или нестандартной детали из любого ящика не зависит от того, какие детали будут извлечены из других ящиков, поэтому в задаче речь идёт о независимых событиях. Рассмотрим следующие независимые события:

– из 1-го ящика извлечена стандартная деталь;
– из 2-го ящика извлечена стандартная деталь;
– из 3-го ящика извлечена стандартная деталь.

По классическому определению:
– соответствующие вероятности.

Интересующее нас событие (из 1-го ящика будет извлечена стандартная деталь и из 2-го стандартная и из 3-го стандартная) выражается произведением .

По теореме умножения вероятностей независимых событий:

– вероятность того, что из трёх ящиков будет извлечено по одной стандартной детали.

Ответ : 0,504

После бодрящих упражнений с ящиками нас поджидают не менее интересные урны:

Задача 4

В трех урнах имеется по 6 белых и по 4 черных шара. Из каждой урны извлекают наудачу по одному шару. Найти вероятность того, что: а) все три шара будут белыми; б) все три шара будут одного цвета.

Опираясь на полученную информацию, догадайтесь, как разобраться с пунктом «бэ» ;-) Примерный образец решения оформлен в академичном стиле с подробной росписью всех событий.

Зависимые события . Событие называют зависимым , если его вероятность зависит от одного или бОльшего количества событий, которые уже произошли. За примерами далеко ходить не надо – достаточно до ближайшего магазина:

– завтра в 19.00 в продаже будет свежий хлеб.

Вероятность этого события зависит от множества других событий: завезут ли завтра свежий хлеб, раскупят ли его до 7 вечера или нет и т.д. В зависимости от различных обстоятельств данное событие может быть как достоверным , так и невозможным . Таким образом, событие является зависимым .

Хлеба… и, как требовали римляне, зрелищ:

– на экзамене студенту достанется простой билет.

Если идти не самым первым, то событие будет зависимым, поскольку его вероятность будет зависеть от того, какие билеты уже вытянули однокурсники.

Как определить зависимость/независимость событий?

Иногда об этом прямо сказано в условии задачи, но чаще всего приходится проводить самостоятельный анализ. Какого-то однозначного ориентира тут нет, и факт зависимости либо независимости событий вытекает из естественных логических рассуждений.

Чтобы не валить всё в одну кучу, задачам на зависимые события я выделю следующий урок, а пока мы рассмотрим наиболее распространённую на практике связку теорем:

Задачи на теоремы сложения вероятностей несовместных
и умножения вероятностей независимых событий

Этот тандем, по моей субъективной оценке, работает примерно в 80% задач по рассматриваемой теме. Хит хитов и самая настоящая классика теории вероятностей:

Задача 5

Два стрелка сделали по одному выстрелу в мишень. Вероятность попадания для первого стрелка равна 0,8, для второго – 0,6. Найти вероятность того, что:

а) только один стрелок попадёт в мишень;
б) хотя бы один из стрелков попадёт в мишень.

Решение : вероятность попадания/промаха одного стрелка, очевидно, не зависит от результативности другого стрелка.

Рассмотрим события:
– 1-й стрелок попадёт в мишень;
– 2-й стрелок попадёт в мишень.

По условию: .

Найдём вероятности противоположных событий – того, что соответствующие стрелки промахнутся:

а) Рассмотрим событие: – только один стрелок попадёт в мишень. Данное событие состоит в двух несовместных исходах:

1-й стрелок попадёт и 2-й промахнётся
или
1-й промахнётся и 2-й попадёт.

На языке алгебры событий этот факт запишется следующей формулой:

Сначала используем теорему сложения вероятностей несовместных событий, затем – теорему умножения вероятностей независимых событий:

– вероятность того, что будет только одно попадание.

б) Рассмотрим событие: – хотя бы один из стрелков попадёт в мишень.

Прежде всего, ВДУМАЕМСЯ – что значит условие «ХОТЯ БЫ ОДИН»? В данном случае это означает, что попадёт или 1-й стрелок (2-й промахнётся) или 2-й (1-й промахнётся) или оба стрелка сразу – итого 3 несовместных исхода.

Способ первый : учитывая готовую вероятность предыдущего пункта, событие удобно представить в виде суммы следующих несовместных событий:

попадёт кто-то один (событие , состоящее в свою очередь из 2 несовместных исходов) или
попадут оба стрелка – обозначим данное событие буквой .

Таким образом:

По теореме умножения вероятностей независимых событий:
– вероятность того, что 1-й стрелок попадёт и 2-й стрелок попадёт.

По теореме сложения вероятностей несовместных событий:
– вероятность хотя бы одного попадания по мишени.

Способ второй : рассмотрим противоположное событие: – оба стрелка промахнутся.

По теореме умножения вероятностей независимых событий:

В результате:

Особое внимание обратите на второй способ – в общем случае он более рационален.

Кроме того, существует альтернативный, третий путь решения, основанный на умолчанной выше теореме сложения совместных событий.

! Если вы знакомитесь с материалом впервые, то во избежание путаницы, следующий абзац лучше пропустить.

Способ третий : события совместны, а значит, их сумма выражает событие «хотя бы один стрелок попадёт в мишень» (см. алгебру событий ). По теореме сложения вероятностей совместных событий и теореме умножения вероятностей независимых событий:

Выполним проверку: события и (0, 1 и 2 попадания соответственно) образуют полную группу, поэтому сумма их вероятностей должна равняться единице:
, что и требовалось проверить.

Ответ :

При основательном изучении теории вероятностей вам встретятся десятки задач милитаристского содержания, и, что характерно, после этого никого не захочется пристрелить – задачи почти подарочные. А почему бы не упростить ещё и шаблон? Cократим запись:

Решение : по условию: , – вероятность попадания соответствующих стрелков. Тогда вероятности их промаха:

а) По теоремам сложения вероятностей несовместных и умножения вероятностей независимых событий:
– вероятность того, что только один стрелок попадёт в мишень.

б) По теореме умножения вероятностей независимых событий:
– вероятность того, что оба стрелка промахнутся.

Тогда: – вероятность того, что хотя бы один из стрелков попадёт в мишень.

Ответ :

На практике можно пользоваться любым вариантом оформления. Конечно же, намного чаще идут коротким путём, но не нужно забывать и 1-й способ – он хоть и длиннее, но зато содержательнее – в нём понятнее, что, почему и зачем складывается и умножается. В ряде случаев уместен гибридный стиль, когда прописными буквами удобно обозначить лишь некоторые события.

Похожие задачи для самостоятельного решения:

Задача 6

Для сигнализации о возгорании установлены два независимо работающих дат­чика. Вероятности того, что при возгорании датчик сработает, для первого и второго датчиков соответственно равны 0,5 и 0,7. Найти вероятность того, что при пожаре:

а) оба датчика откажут;
б) оба датчика сработают.
в) Пользуясь теоремой сложения вероятностей событий, образующих полную группу , найти вероятность того, что при пожаре сработает только один датчик. Проверить результат прямым вычислением этой вероятности (с помощью теорем сложения и умножения) .

Здесь независимость работы устройств непосредственно прописана в условии, что, кстати, является важным уточнением. Образец решения оформлен в академичном стиле.

Как быть, если в похожей задаче даны одинаковые вероятности, например, 0,9 и 0,9? Решать нужно точно так же! (что, собственно, уже продемонстрировано в примере с двумя монетами)

Задача 7

Вероятность поражения цели первым стрелком при одном выстреле равна 0,8. Вероятность того, что цель не поражена после выполнения первым и вторым стрелками по одному выстрелу равна 0,08. Какова вероятность поражения цели вторым стрелком при одном выстреле?

А это небольшая головоломка, которая оформлена коротким способом. Условие можно переформулировать более лаконично, но переделывать оригинал не буду – на практике приходится вникать и в более витиеватые измышления.

Знакомьтесь – он самый, который настрогал для вас немереное количество деталей =):

Задача 8

Рабочий обслуживает три станка. Вероятность того, что в течение смены первый станок потребует настройки, равна 0,3, второй – 0,75, третий – 0,4. Найти вероятность того, что в течение смены:

а) все станки потребуют настройки;
б) только один станок потребует настройки;
в) хотя бы один станок потребует настройки.

Решение : коль скоро в условии ничего не сказано о едином технологическом процессе, то работу каждого станка следует считать не зависимой от работы других станков.

По аналогии с Задачей №5, здесь можно ввести в рассмотрение события , состоящие в том, что соответствующие станки потребуют настройки в течение смены, записать вероятности , найти вероятности противоположных событий и т.д. Но с тремя объектами так оформлять задачу уже не очень хочется – получится долго и нудно. Поэтому здесь заметно выгоднее использовать «быстрый» стиль:

По условию: – вероятности того, что в течение смены соответствующие станки потребуют настойки. Тогда вероятности того, что они не потребуют внимания:

Один из читателей обнаружил тут прикольную опечатку, даже исправлять не буду =)

а) По теореме умножения вероятностей независимых событий:
– вероятность того, что в течение смены все три станка потребуют настройки.

б) Событие «В течение смены только один станок потребует настройки» состоит в трёх несовместных исходах:

1) 1-й станок потребует внимания и 2-й станок не потребует и 3-й станок не потребует
или :
2) 1-й станок не потребует внимания и 2-й станок потребует и 3-й станок не потребует
или :
3) 1-й станок не потребует внимания и 2-й станок не потребует и 3-й станок потребует .

По теоремам сложения вероятностей несовместных и умножения вероятностей независимых событий:

– вероятность того, что в течение смены только один станок потребует настройки.

Думаю, сейчас вам должно быть понятно, откуда взялось выражение

в) Вычислим вероятность того, что станки не потребуют настройки, и затем – вероятность противоположного события:
– того, что хотя бы один станок потребует настройки.

Ответ :

Пункт «вэ» можно решить и через сумму , где – вероятность того, что в течение смены только два станка потребуют настройки. Это событие в свою очередь включает в себя 3 несовместных исхода, которые расписываются по аналогии с пунктом «бэ». Постарайтесь самостоятельно найти вероятность , чтобы проверить всю задачу с помощью равенства .

Задача 9

Из трех орудий произвели залп по цели. Вероятность попадания при одном выстреле только из первого орудия равна 0,7, из второго – 0,6, из третьего – 0,8. Найти вероятность того, что: 1) хотя бы один снаряд попадет в цель; 2) только два снаряда попадут в цель; 3) цель будет поражена не менее двух раз.

Решение и ответ в конце урока.

И снова о совпадениях: в том случае, если по условию два или даже все значения исходных вероятностей совпадают (например, 0,7; 0,7 и 0,7), то следует придерживаться точно такого же алгоритма решения.

В заключение статьи разберём ещё одну распространённую головоломку:

Задача 10

Стрелок попадает в цель с одной и той же вероятностью при каждом выстреле. Какова эта вероятность, если вероятность хотя бы одного попадания при трех выстрелах равна 0,973.

Решение : обозначим через – вероятность попадания в мишень при каждом выстреле.
и через – вероятность промаха при каждом выстреле.

И таки распишем события:
– при 3 выстрелах стрелок попадёт в мишень хотя бы один раз;
– стрелок 3 раза промахнётся.

По условию , тогда вероятность противоположного события:

С другой стороны, по теореме умножения вероятностей независимых событий:

Таким образом:

– вероятность промаха при каждом выстреле.

В результате:
– вероятность попадания при каждом выстреле.

Ответ : 0,7

Просто и изящно.

В рассмотренной задаче можно поставить дополнительные вопросы о вероятности только одного попадания, только двух попаданий и вероятности трёх попаданий по мишени. Схема решения будет точно такой же, как и в двух предыдущих примерах:

Однако принципиальное содержательное отличие состоит в том, что здесь имеют место повторные независимые испытания , которые выполняются последовательно, независимо друг от друга и с одинаковой вероятностью исходов.

Зависимость событий понимается в вероятностном смысле, а не в функциональном. Это значит, что по появлению одного из зависимых событий нельзя однозначно судить о появлении другого. Вероятностная зависимость означает, что появление одного из зависимых событий только изменяет вероятность появления другого. Если вероятность при этом не изменяется, то события считаются независимыми.

Определение : Пусть - произвольное вероятностное пространство, - некоторые случайные события. Говорят, что событие А не зависит от события В , если его условная вероятность совпадает с безусловной вероятностью :

.

Если , то говорят, что событие А зависит от события В .

Понятие независимости симметрично, то есть, если событие А не зависит от события В ,то и событие В не зависит от события А . Действительно, пусть . Тогда . Поэтому говорят просто, что события А и В независимы.

Из правила умножения вероятностей вытекает следующее симметричное определение независимости событий.

Определение : События А и В, определенные на одном и том же вероятностном пространстве , называются независимыми , если

Если , то события А и В называются зависимыми .

Отметим, что данное определение справедливо и в случае, когда или .

Свойства независимых событий.

1. Если события А и В являются независимыми, то независимыми являются также следующие пары событий: .

▲ Докажем, например, независимость событий . Представим событие А в виде: . Поскольку события являются несовместными, то , а в силу независимости событий А и В получаем, что . Отсюда , что и означает независимость . ■

2. Если событие А не зависит от событий В 1 и В 2 , которые являются несовместными (), то событие А не зависит и от суммы .

▲ Действительно, используя аксиому аддитивности вероятности и независимость события А от событий В 1 и В 2 , имеем:

Связь между понятиями независимости и несовместности.

Пусть А и В - любые события, имеющие ненулевую вероятность: , так что . Если при этом события А и В являются несовместными (), то и поэтому равенство не может иметь место никогда. Таким образом, несовместные события являются зависимыми .

Когда рассматривают более двух событий одновременно, то попарная их независимость недостаточно характеризует связь между событиями всей группы. В этом случае вводится понятие независимости в совокупности.

Определение : События , определенные на одном и том же вероятностном пространстве , называются независимыми в совокупности , если для любого 2 £ m £ n и любой комбинации индексов справедливо равенство:

При m = 2 из независимости в совокупности следует попарная независимость событий. Обратное неверно.


Пример. (Бернштейн С.Н.)

Случайный эксперимент заключается в подбрасывании правильного четырехгранника (тетраэдра). Наблюдается грань, выпавшая книзу. Грани тетраэдра окрашены следующим образом: 1 грань - белая, 2 грань - чёрная,
3 грань - красная, 4 грань - содержит все цвета.

Рассмотрим события:

А = {Выпадение белого цвета}; B = {Выпадение черного цвета};

C = {Выпадение красного цвета}.

Тогда ;

Следовательно, события А , В и С являются попарно независимыми.

Однако, .

Поэтому события А , В и С независимыми в совокупности не являются.

На практике, как правило, независимость событий не устанавливают, проверяя ее по определению, а наоборот: считают события независимыми из каких-либо внешних соображений или с учетом обстоятельств случайного эксперимента, и используют независимость для нахождения вероятностей произведения событий.

Теорема (умножения вероятностей для независимых событий).

Если события ,определенные на одном и том же вероятностном пространстве , являются независимыми в совокупности, то вероятность их произведения равна произведению вероятностей:

▲ Доказательство теоремы следует из определения независимости событий в совокупности или из общей теоремы умножения вероятностей с учетом того, что при этом

Пример 1(типовой пример на нахождение условных вероятностей, понятие независимости, теорему сложения вероятностей).

Электрическая схема состоит из трех независимо работающих элементов. Вероятности отказов каждого из элементов соответственно равны .

1) Найти вероятность отказа схемы.

2) Известно, что схема отказала.

Какова вероятность того, что при этом отказал:

а) 1-й элемент; б) 3-й элемент?

Решение. Рассмотрим события = {Отказал k -й элемент}, и событие А = {Отказала схема}. Тогда событие А представляется в виде:

.

1) Поскольку события и несовместными не являются, то аксиома аддитивности вероятности Р3) неприменима и для нахождения вероятности следует использовать общую теорему сложения вероятностей, в соответствии с которой