Рутений применение. Исследовательская работа: Химический элемент- Рутений



Ru

Os

История

Происхождение названия

Получение

Рутений получают как «отходы» при аффинировании платины и платиновых металлов.

Значительным источником рутения для его добычи является выделение его из осколков деления ядерных материалов (плутоний , уран , торий), где его содержание в отработанных ТВЭЛах достигает 250 граммов на тонну отработанного ядерного топлива.

Также разработана технология получения рутения из технеция-99 с помощью нейтронного облучения молибдена .

Добыча, запасы и цена

Физические и химические свойства

Изотопный состав

Природный рутений состоит из семи стабильных изотопов :

96 Ru (5,7 % по массе), 98 Ru (2,2 %), 99 Ru (12,8 %), 100 Ru (12,7 %), 101 Ru (13 %), 102 Ru (31,3 %) и 104 Ru (18,3 %).

Физические свойства

По тугоплавкости (Т пл = 2334 °C ) рутений уступает лишь нескольким элементам - рению , осмию , молибдену , иридию , вольфраму , танталу и ниобию .

Химические свойства

Рутений - весьма инертный металл.

Неорганические соединения

Органическая химия рутения

Рутений образует ряд металлоорганических соединений и является активным катализатором .

Применение

  • Небольшая добавка рутения (0,1 %) увеличивает коррозионную стойкость титана .
  • В сплаве с платиной используется для изготовления чрезвычайно износостойких электрических контактов.
  • Диоксид рутения и рутенаты висмута используются в толстоплёночных резисторах. Эти два применения в электронике потребляют порядка 50 % производимого рутения.
  • Катализатор для многих химических реакций. Очень важное место рутения как катализатора в системах очистки воды орбитальных станций.
  • Рутений красный en применяется как конкурентный антагонист для исследования ионных каналов (CatSper1, TASK,RyR1, RyR2, RyR3, TRPM6, TRPM8, TRPV1, TRPV2, TRPV3, TRPV4, TRPV5, TRPV6,TRPA1, mCa1, mCa2, CALHM1).

Уникальна также способность рутения к каталитическому связыванию атмосферного азота при комнатной температуре. Открытие, сделанное экспериментальным путём исследователями из университета Миннесоты в 2018 году, демонстрирует то, что химический элемент рутений является четвёртым химическим элементом, обладающим уникальными магнитными свойствами при комнатной температуре. До последнего времени людям были известны лишь три стабильных магнитных элемента, железо (Fe), кобальт (Cо), никель (Ni) и, отчасти, гадолиний (Gd), который теряет магнитные свойства при температуре выше 8 градусов Цельсия. Обнаружение нового магнитного материала может привести к разработке новых типов датчиков, устройств хранения, обработки информации и массы других электронных и электромеханических устройств. Помимо традиционных технологий, в которых используются магнитные свойства материалов, появление нового магнитного материала может сыграть важную роль для дальнейшего развития ряда новых направлений, таких, как спинтроника . Этому будет благоприятствовать то, что технологии выращивания тонких плёнок и создания наноструктур уже дошли до того уровня, который позволяет производить материалы, имеющие уникальные свойства, которыми не обладают эти же материалы естественного происхождения .

Рутений и его сплавы находят применение в качестве жаропрочных конструкционных материалов в аэрокосмической технике, и до 1500 °C по прочности превосходят лучшие сплавы молибдена и вольфрама (имея преимущество также в высокой стойкости к окислению).

Физиологическое действие и биологическая роль

Рутений, по всей видимости, является микроэлементом. Он является единственным платиновым металлом , который обнаруживается в составе живых организмов (по некоторым данным - ещё и платина). Концентрируется в основном в мышечной ткани.

Рутений - элемент побочной подгруппы восьмой группы пятого периода периодической системы химических элементов Д. И. Менделеева, атомный номер 44. Обозначается символом Ru (лат. Ruthenium ).

История открытия рутения

История открытия этого элемента началась в России, когда в 20-х годах XIX столетия на Урале были обнаружены месторождения платины. Весть об этом открытии быстро облетела мир и вызвала много тревог и волнений на международном рынке. Среди иностранных спекулянтов ходили слухи о чудовищных самородках, о платиновом песке, который платиноискатели черпают прямо лопатами. Месторождения платины, действительно, оказались богатыми, и граф Канкрин, бывший в то время министром финансов России, дал распоряжение о чеканке платиновых монет. Монеты стали чеканить достоинством в 3,6 и 12 рублей. Было выпущено 1 400 000 платиновых монет, на которые израсходовали более 20 т самородной платины.

В год распоряжения Канкрина о чеканке монет профессор Юрьевского университета Озанн, исследуя образцы уральской платины, пришел к заключению, что платину сопровождают три новых металла. Один из них Озанн назвал полураном, второй - полином, а третьему в честь латинского названия. России - Рутения дал имя - рутений. "Открытие" Озанна химики встретили с недоверием. Особенно протестовал шведский химик Берцелиус, авторитет которого в то время был поистине мировым. Возникший между Озанном и Берцелиусом спор взялся разрешить профессор химии Казанского университета К. К. Клаус. Получив в свое распоряжение небольшое количество остатков от чеканки платиновой монеты, Клаус обнаружил в них новый металл, за которым и сохранил название рутений, предложенное Озанном. 13 сентября 1844 г. Клаус сделал в Академии наук сообщение о новом элементе и его свойствах. В 1845 г. доклад Клауса под названием "Химические исследования остатков уральской платиновой руды и металла рутения" вышел в свет в виде отдельной книги. "...Малое количество изученного материала - не более шести граммов совершенно чистого металла - не позволило мне продолжать мои исследования", - писал Клаус в своей книге. Однако полученные данные о свойствах нового металла дали возможность Клаусу твердо заявить об открытии нового химического элемента.

Желая ознакомить иностранных ученых с открытием нового элемента, Клаус послал образец металла Берцелиусу. Ответ Берцелиуса был по меньшей мере странным. Имея в руках новый элемент с подробным описанием свойств, он не согласился с мнением Клауса. Берцелиус заявил, что полученный от Клауса металл есть "проба нечистого иридия", давно известного элемента. Позднее Берцелиус вынужден был признать свою ошибку.

Получение рутения

Разделение платиновых металлов и получение их в чистом виде (аффинаж) -очень сложная задача, требующая большой затраты труда, времени, дорогих реактивов, а также высокого мастерства. Самородную платину, платиновый «лом» и другой материал прежде всего обрабатывают «царской водкой» прислабом нагревании. При этом полностью переходят в раствор платина и палладий в видеН2 и H2, медь, железо и никель - в виде хлоридов CuCl2,FeCl3, NiCl2. Частично растворяются родий и иридий в виде H3 иH2. Нерастворимый в «царcкой водке» остаток состоит из соединения осмия с иридием, а также сопутствующих минералов (кварца SiO2, хромистого железняка FeCr2O4, магнитного железняка Fе3О4 и др.).Отфильтровав раствор, из него осаждают платину хлоридом аммония. Однако, чтобы осадок гексахлорплатината аммония не содержал иридия, который образует также труднорастворимый гексахлориридит (IV) аммония(NH4)2, необходимо восстановить Ir (IV) до Ir (III). Это производят прибавлением, например, тростникового сахара C12H22O14 (способ И.И.Черняева). Гексахлориридит (III) аммония растворим в воде и хлоридомаммония не осаждается. Осадок гексахлорплатината аммония отфильтровывают, промывают, высушивают и прокаливают. Полученную платиновую губку спрессовывают, а затем сплавляют вкислородо-водородном пламени или в электрической высокочастотной печи. Из фильтра от гексахлорплатината аммония извлекают палладий, родий ииридий; из сплава иридия выделяют иридий, осмий и рутений. Необходимые для этого химические операции очень сложны. В настоящее время главным источником получения платиновых металлов служат сульфидные медно-никелевые руды. В результате их сложной переработки выплавляют так называемые «черновые» металлы - загрязненные никель и медь. При их электролитическом рафинировании благородные металлы накапливаются в виде анодного шлама, который направляют на аффинаж.

Значительным источником рутения для его добычи является выделение его из осколков деления ядерных материалов (плутоний, уран, торий) где его содержание в отработанных ТВЭЛах достигает 250 граммов на тонну «сгоревшего» ядерного топлива.

Физические свойства рутения

По тугоплавкости (Тпл 2250 °C) рутений уступает лишь нескольким элементам - рению, осмию, вольфраму.

Наиболее ценные свойства Рутения - тугоплавкость, твердость, химическая стойкость, способность ускорять некоторые химические реакции. Наиболее характерны соединения с валентностью 3+, 4+ и 8+. Склонен к образованию комплексных соединений. Применяется как катализатор, в сплавах с платиновыми металлами, как материал для острых наконечников, для контактов, электродов и в ювелирном деле.

Химические свойства рутения

Рутений и осмий хрупки и очень тверды. При действии кислорода и сильных окислителей они образуют оксиды RuO4 и OsO4. Это легкоплавкие желтые кристаллы. Пары обоих соединений имеют резкий, неприятный запах и очень ядовиты. Оба соединения легко отдают кислород, восстанавливаясь до RuO2 иOsO2 или до металлов. Со щелочами RuO4 дает соли (рутенаты): 2Ru04 + 4КОН = 2K2RuO4 + 2Н2O + О2

Применение рутения
  • Небольшая добавка рутения (0,1 %) увеличивает коррозионную стойкость титана.
  • В сплаве с платиной используется для изготовления чрезвычайно износостойких электрических контактов.
  • Катализатор для многих химических реакций. Очень важное место рутения как катализатора в системах очистки воды орбитальных станций.

Уникальна также способность рутения к каталитическому связыванию атмосферного азота при комнатной температуре.

Рутений и его сплавы находят применение в качестве жаропрочных конструкционных материалов в аэрокосмической технике, и до 1500 °C по прочности превосходят лучшие сплавы молибдена и вольфрама (имея преимущество так же в высокой стойкости к окислению).

В последние годы широко изучается оксид рутения как материал для производства суперконденсаторов электроэнергии, удельная электрическая ёмкость свыше 700 Фарад/грамм.

Применение рутения для выращивания графена

Исследователи из Brookhaven National Laboratory (США) показали, что при эпитаксиальном росте графена на поверхности Ru(0001) формируются макроскопические графеновые области. При этом рост протекает послойно, и, хотя первый слой сильно связан с подложкой, второй практически с ней не взаимодействует и сохраняет все уникальные свойства графена.

Синтез основан на том, что растворимость углерода в рутении сильно зависит от температуры. При 1150 °С рутений насыщается углеродом, а при снижении температуры до 825 °С углерод выходит на поверхность, в результате чего формируются островки графена размером более 100 мкм. Островки разрастаются и объединяются, после чего начинается рост второго слоя.

Уже несколько дней муссируется в СМИ тема про рутений. Не буду ее пересказывать - думаю вы в курсе.

Так что это такое, было ли это и если было, то чем опасно?


Что такое рутений и где его применяют?

Рутений - это платиновый металл. Сейчас известно семь стабильных и 27 радиоактивных изотопов рутения.

Рутений используют в сплавах для увеличения износостойкости - например, в титане доля рутения составляет 0,1%, а при производстве электрических контактов рутений сплавляют с платиной. Сплавы рутения чрезвычайно устойчивы к высокой температуре, поэтому они используются в аэрокосмической технике как конструкционные материалы. Соединения рутения применяются в ювелирном деле, в электронике - в частности, в тонкопленочных резисторах (это составляет 50% всех случаев применения рутения), а также в солнечных батареях. Кроме того, этот металл - важный катализатор для химических реакций: например, с его помощью на орбитальных станциях очищают воду.

Как открыли рутений?

Фактически этот элемент открывали трижды. Но официально открытие принадлежит профессору Казанского университета Карлу Клаусу. В 1844 году ученый исследовал остатки, которые были получены после извлечения платины и платиновых металлов из руды. Эти остатки Клаус сплавил с селитрой. Часть полученного сплава, которая не растворялась в воде, он подверг воздействию царской водки - смеси азотной и соляной кислоты, которая растворяет металлы, а то, что осталось, перегнал досуха. Из полученного вещества химик выделил гидроокись железа в виде осадка и растворил ее в соляной кислоте. Темный пурпурно-красный цвет раствора навел его на мысль о присутствии неизвестного элемента. Клаусу удалось выделить этот элемент - правда, не в чистом виде, а в соединении с серой.

Новый элемент был назван в честь России - рутением (от лат. Ruthenia). Изначально идея названия принадлежала другому ученому, немецкому химику Готфриду Озанну - он дал это имя одному из трех платиновых металлов, полученных им также при анализе уральской платиновой руды в 1928 году. Однако открытие Озанна не подтвердилось в ходе проверки. Тем не менее, Клаус полагал, что Озанн получил именно рутений, и упомянул об этом. Существует также версия, что элемент на три десятилетия раньше открыл польский профессор Анджей Снядецкий - он предлагал назвать металл вестием, в честь астероида Веста, открытого в 1807 году.


А что известно о рутении-106?

Это радиоактивный изотоп с периодом полураспада чуть более года - из всех нестабильных изотопов рутения этот наиболее долгоживущий. В природе он отсутствует: он появляется при делении урана и плутония в ядерных реакторах - по сути, это побочный продукт утилизации отработанного ядерного топлива (ОЯТ).На момент окончания облучения топлива в реакторе активность 106Ru достигает 2,01 Бк на тонну ОЯТ - это довольно большая цифра.

Основная проблема рутения-106 в том, что во время переработки ядерного топлива он вступает в устойчивые соединения, которые мешают производству новой продукции. Химикам приходится очищать компоненты от рутения на каждом этапе технологического процесса, чтобы получить из отработавшего ядерного топлива новое.

Рутений-106 используется в лучевой терапии при злокачественных опухолях глаз. Также его можно использовать в радиоизотопных термоэлектрических генераторах, которые применяются, в частности в электроснабжении удаленных от Солнца космических аппаратов. Однако для этих целей на практике применяют плутоний-238, изотопы рутения же не используются.

Опасен ли рутений-106 для здоровья?

Рутений-106, как и любой другой источник ионизирующего излучения, оказывает воздействие на организм. Он входит в группу Б - вторую по радиотоксичности. В группу А входят особо опасные радионуклиды: полоний-210, радий-226, плутоний-238 и другие альфа-излучатели. От потока альфа-частиц легко защититься листом бумаги, так как у них низкая проникающая способность - но если они все же попадают в организм, они вызывают лучевую болезнь.

Рутений-106 является бета-излучателем - проще говоря, он испускает поток электронов. В ходе бета-распада образуется сначала родий-106, который моментально распадается до стабильного палладия-106. На обеих стадиях испускаются электроны, а также небольшая компонента гамма-излучения. Если бета-частица попадает в организм, вреда от нее в 20 раз меньше, чем от альфа частицы - но ее проникающая способность выше.


А откуда такая шумиха по поводу рутения?

12 октября Росгидромет опубликовал бюллетень о радиационной обстановке в России за сентябрь 2017 года, в котором были указаны случаи повышения бета-активности в воздухе и во время выпадения атмосферных осадков. В частности, говорилось о повышенной активности рутения-106 - например, в микрорайоне Дема в Уфе 26 — 27 сентября прошел «рутениевый дождь». Еще раньше, в сентябре европейские мониторинговые станции зафиксировали превышение содержания рутения-106 в воздухе. Немецкие Федеральное ведомство по защите от радиации и Федеральное министерство по охране окружающей среды, охране природы и безопасности реакторов предположили, что источник рутения находится на Южном Урале.

И что, это действительно опасно?

Не так страшен черт, как его малюют. Активность рутения-106 на несколько порядков ниже предельно допустимой нормы и вреда здоровью не несет - это изначально и подчеркивал Росгидромет в своем заявлении.

«Определить рутений в атмосфере очень сложно, особенно в таких малых концентрациях», - говорит сотрудник кафедры радиохимии СПбГУ.

Например, для Аргаяша в бюллетене указаны данные в 7,72 х 10 -5 Бк/м3 , в то время как допустимое значение активности рутения-106 по современным стандартам составляет 4,4 Бк/м3. Появление же в отчете данных о превышении содержания рутения-106 в пробах относительно предыдущего периода в «сотни» раз в Росгидромете объяснили тем, что в предыдущих пробах этот радионуклид вообще отсутствовал. Как поясняет главный редактор портала «Геоэнергетика.ру» Борис Марцинкевич, то, что станции радиологического контроля смогли зафиксировать столь малые концентрации 106Ru, можно считать «тестированием, которое убедительно доказало, что станции работают на хорошем техническом уровне». Международное агентство по атомной энергии (МАгАтЭ) изучило предоставленные данные и отвергло обвинения в адрес России.

Кроме того, существует множество естественных альфа-, бета- и гамма-излучателей.

«Если выйти на набережную в Санкт-Петербурге, там радиационный фон будет выше, чем у нас в лаборатории», - говорит сотрудник кафедры радиохимии СПбГУ. «Потому что гранит от природы обладает высоким радиационным фоном».

А почему активность рутения-106 внезапно выросла?

Точно неизвестно. Как заявили в Росатоме, крупных выбросов радиоактивных веществ на российских предприятиях не было. Производственное объединение «Маяк», в свою очередь, категорически отрицает причастность к возможному загрязнению атмосферы изотопом рутений-106. Крупное загрязнение атмосферы рутением может происходить при нарушении герметичности оболочки тепловыделяющего элемента в реакторе, а также при разрушении источников ионизирующего излучения на основе изотопа. ПО «Маяк» утверждает, что выделение изотопа из отработанного ядерного топлива, равно как и изготовление из него источников излучения на предприятии не проводятся уже много лет. Более того, при первом варианте обычно происходит выброс других, «осколочных» изотопов, что обязательно сказалось бы на показателях этих элементов.


Говорят, что рутений прилетел из космоса - это правда?

«Интерфакс» опубликовал версию, что выброс рутения-106 мог произойти при разрушении спутника. Однако академик Российской академии космонавтики имени Циолковского Александр Железняков говорит, что рутений-106 не используется в электрогенераторах спутников - и если бы такой аппарат сводили с орбиты, его траекторию бы тщательно отслеживали. Поэтому эта версия на грани фантастики.

Откуда же тогда он мог взяться?

Правдоподобным выглядит предположение заведующего кафедры радиохимии химического факультета МГУ имени Ломоносова, член-корреспондента РАН Степана Калмыкова. Он считает, что высокочистый раствор радионуклида мог попасть в атмосферу из медицинского учреждения или предприятия, где работают или производят радиофармпрепараты. Это могло произойти на стадии технического процесса, где рутений превращается в аэрозоль - благодаря летучести он мог распространиться в атмосфере. Хотя другие эксперты говорят, что на утечку рутения, предназначенного для медицинских целей (его используют в лучевой терапии), не похоже: облако слишком большое. Но авария, связанная с ядерным топливом или с его отходами, практически исключена, говорит эксперт.

А вице-губернатор Челябинской области Олег Климов сообщил, что «25 сентября, еще до сообщений о рутении в Европе, были зафиксированы концентрации рутения на постах контроля на Южном Урале. Их размер в 20 тыс. раз меньше допустимой годовой дозы. Проверка показала, что это чистый рутений, который к нам пришел из другого места, — отметил Олег Климов. — Ситуация искусственно напряжена и не имеет под собой оснований».

Может быть, напуганным европейцам стоит искать источник в другой стране? Но, оказывается, в Старом Свете, предприятия, имеющие мало-мальское отношение к работе с радиоактивными веществами, строго засекречены. У нас же всё известно, и жертвами этой прозрачности стали российские метеорологи, которые заявили, что да, содержание изотопов рутения в двух пунктах сбора превысило фон предыдущего месяца в сотни раз. Когда речь идет о радиоактивных веществах — все это выглядит страшно для дилетантов. А специалист, глядя на цифры понимает, что и в России, и в Европе концентрация рутения-106 была в тысячи раз ниже хоть сколько-нибудь опасного уровня. И чтобы в будущем не пугать людей, решили впредь в отчетные таблицы вносить сравнения с этими самыми предельными концентрациями.

Вряд ли дело бесхозного рутения будет раскрыто. Радиация здесь лишь фон для шумихи. Ведь в феврале над Европой гуляло облако изотопа йода, куда более опасного, чем рутений, но разве кто-нибудь слышали об этом?

источники

Рутений - наиболее легкий и наименее "благородный" из всех металлов платиновой группы. Является едва ли не самым "многовалентным" элементом (известно девять валентных состояний). Несмотря на более чем полувековую историю изучения, он и сегодня перед современными химиками ставит немало вопросов и проблем. Так что же представляет собой рутений как химический элемент? Для начала - небольшой экскурс в историю.

Загадочная и богатая

Название и история открытия рутения неразрывно связаны с Россией. В самом начале XΙX века мировую общественность взволновало и обеспокоило известие о том, что в Российской империи обнаружены богатейшие залежи платины. Ходили слухи, что на Урале добычу этого драгоценного металла можно было вести обыкновенной лопатой. Факт открытия богатых месторождений был вскоре подтвержден тем, что министр финансов России Е. Ф. Канкрин направил на Петербургский Монетный двор высочайший указ о чеканке монет из платины. В последующие годы было запущено в оборот около полутора миллионов монет (3,6 и 12 руб.) для производства которых затрачено 20 тонн драгоценного металла.

"Открытие" Озанна

Изучением состава уральской драгоценной руды занялся профессор Дерптско-Юрьевского (ныне Тартусского) университета Готфрид Озанн. Он пришел к выводу, что платине сопутствуют три неизвестных металла - полуран, полином и рутений - названия которым были даны самим Озанном. Кстати, третий он назвал в честь России (от латинского Ruthenia).

Коллеги Озанна во всей Европе, во главе с авторитетнейшим шведским химиком Йенсом Берцелиусом, очень критично отнеслись к сообщению профессора. В попытке оправдаться ученый повторил серию своих экспериментов, но прежних результатов достигнуть не удалось.

Спустя два десятилетия работами Озанна заинтересовался профессор химии Карл Карлович Клаусс (Казанский университет). Он добился разрешения министра финансов получить в лаборатории Монетного двора несколько фунтов остатков производства монет для проведения повторных исследований.

Русский академик А. Е. Арбузов отмечал в своих трудах, что для открытия нового элемента в те времена химику требовались чрезвычайное трудолюбие и настойчивость, наблюдательность и проницательность, а самое главное - тонкое экспериментальное чутье. Все вышеперечисленные качества в самой высокой степени были присущи молодому Карлу Клауссу.

Исследования ученого имели и практическое значение - дополнительное извлечение чистой платины из остатков руды. Разработав собственный план эксперимента, Клаусс сплавил рудный материал с селитрой и извлек растворимые элементы: осмий, иридий, палладий. Нерастворимую часть подверг воздействию смеси концентрированных кислот ("царской водки") и перегонке. В осадке гидроокиси железа он обнаружил наличие неизвестного металла и выделил его сначала в виде сульфида, а затем - и в чистом (около 6 граммов). Профессор сохранил за элементом название, предложенное Озанном, - рутений.

Открыть и доказать

Но как оказалось, история открытия химического элемента рутения только начиналась. После опубликования в 1844 году результатов исследования на Клаусса обрушился град критики. Выводы неизвестного казанского ученого были скептически восприняты крупнейшими химиками мира. Даже отправка образца нового элемента Берцелиусу не спасла ситуацию. По мнению шведского мэтра, рутений Клаусса являлся лишь "пробой нечистого иридия".

Только выдающиеся качества Карла Карловича как химика-аналитика и экспериментатора и серия дополнительных исследований позволили доказать ученому свою правоту. В 1846 году открытие получило официальное признание и подтверждение. За проведенную работу Клаусс был удостоен Демидовской премии Российской академии наук в размере 10 тыс. рублей. Благодаря таланту и настойчивости казанского профессора ряды платиноидов пополнил рутений - первый элемент, открытый в России (и на сегодняшний день, к сожалению отечественной химической школы, единственный).

Дальнейшие исследования

Области применения

Хотя все свойства благородного металла у рутения присутствуют в полной мере, широкого распространения в ювелирной индустрии элемент не получил. Его используют лишь для укрепления сплавов и придания дорогим украшениям большей прочности.

По количеству потребляемого рутения секторы промышленности расположились в следующем порядке:

  1. Электронный.
  2. Электрохимический.
  3. Химический.

Очень востребованы каталитические свойства элемента. Его применяют при синтезе синильной и азотной кислот, при получении предельных углеводородов, глицерина и полимеризации этилена. В металлургической промышленности добавки рутения используют для увеличения антикоррозийных свойств, придания сплавам прочности, химической и механической стойкости. Радиоактивные изотопы рутения нередко помогают ученым при проведении научных исследований.

Нашли применение и многие соединения элемента в качестве хороших окислителей и красителей. В частности, хлориды используют для усиления люминесценции.

Биологическое значение

Рутений обладает способностью накапливаться в клетках живых тканей, главным образом - мышечных (единственный из металлов платиновой группы). Может провоцировать развитие аллергических реакций, оказывать негативное воздействие на слизистую оболочку глаз и верхнего дыхательного тракта.

В медицине благородный металл используют как средство для распознавания пораженных тканей. Лекарственные препараты на его основе применяют для лечения туберкулеза и различных инфекций, поражающих кожные покровы человека. По этой причине весьма перспективным выглядит использование способности рутения образовывать прочные нитрозокомплексы в борьбе с заболеваниями, связанными с избыточной концентрацией нитратов в организме человека (гипертонии, артрита, септического шока и эпилепсии).

Кто виноват?

Совсем недавно ученые Западной Европы всерьез обеспокоили общественность сообщением, что над континентом растет содержание радиоактивного изотопа рутения Ru 106. Самообразование его в атмосфере специалисты полностью исключают. Как и аварийный выброс с АЭС, так как тогда в воздухе обязательно присутствовали бы радионуклиды цезия и йода, что не подтверждается экспериментальными данными. Воздействие этого изотопа на организм человека, как и всякого радиоактивного элемента, ведет к облучению тканей и органов, развитию онкологических заболеваний. Возможные источники загрязнения, по версии западных СМИ, расположены на территории России, Украины или Казахстана.

В ответ представитель Департамента коммуникаций Росатома заявил, что все предприятия госкорпорации работали и работают в штатных режимах. Международное агентство по атомной энергетике (МАГАТЭ) в своем заключении, основываясь на данных собственного мониторинга, назвало все обвинения в адрес Российской Федерации беспочвенными.