Математика и мы. В случайном эксперименте симметричную монету бросают дважды В эксперименте случайном симметрично бросают дважды

Задачи на подбрасывание монет считаются довольно сложными. И перед тем как решать их, требуется небольшое пояснение. Задумайтесь, любая задача по теории вероятностей в итоге сводится к стандартной формуле:

где p - искомая вероятность, k - число устраивающих нас событий, n - общее число возможных событий.

Большинство задач B6 решаются по этой формуле буквально в одну строчку - достаточно прочитать условие. Но в случае с подбрасыванием монет эта формула бесполезна, поскольку из текста таких задач вообще не понятно, чему равны числа k и n . В этом и состоит вся сложность.

Тем не менее, существует как минимум два принципиально различных метода решения:

  1. Метод перебора комбинаций - стандартный алгоритм. Выписываются все комбинации орлов и решек, после чего выбираются нужные;
  2. Специальная формула вероятности - стандартное определение вероятности, специально переписанное так, чтобы было удобно работать с монетами.

Для решения задачи B6 надо знать оба метода. К сожалению, в школах изучают только первый. Не будем повторять школьных ошибок. Итак, поехали!

Метод перебора комбинаций

Этот метод еще называется «решение напролом». Состоит из трех шагов:

  1. Выписываем все возможные комбинации орлов и решек. Например: ОР, РО, ОО, РР. Число таких комбинаций - это n ;
  2. Среди полученных комбинаций отмечаем те, которые требуются по условию задачи. Считаем отмеченные комбинации - получаем число k ;
  3. Осталось найти вероятность: p = k : n .

К сожалению, этот способ работает лишь для малого количества бросков. Потому что с каждым новым броском число комбинаций удваивается. Например, для 2 монет придется выписать всего 4 комбинации. Для 3 монет их уже 8, а для 4 - 16, и вероятность ошибки приближается к 100%. Взгляните на примеры - и сами все поймете:

Задача. В случайном эксперименте симметричную монету бросают 2 раза. Найдите вероятность того, что орлов и решек выпадет одинаковое количество.

Итак, монету бросают два раза. Выпишем все возможные комбинации (O - орел, P - решка):

Итого n = 4 варианта. Теперь выпишем те варианты, которые подходят по условию задачи:

Таких вариантов оказалось k = 2. Находим вероятность:

Задача. Монету бросают четыре раза. Найдите вероятность того, что решка не выпадет ни разу.

Снова выписываем все возможные комбинации орлов и решек:

OOOO OOOP OOPO OOPP OPOO OPOP OPPO OPPP
POOO POOP POPO POPP PPOO PPOP PPPO PPPP

Всего получилось n = 16 вариантов. Вроде, ничего не забыл. Из этих вариантов нас устраивает лишь комбинация «OOOO», в которой вообще нет решек. Следовательно, k = 1. Осталось найти вероятность:

Как видите, в последней задаче пришлось выписывать 16 вариантов. Вы уверены, что сможете выписать их без единой ошибки? Лично я - не уверен. Поэтому давайте рассмотрим второй способ решения.

Специальная формула вероятности

Итак, в задачах с монетами есть собственная формула вероятности. Она настолько простая и важная, что я решил оформить ее в виде теоремы. Взгляните:

Теорема. Пусть монету бросают n раз. Тогда вероятность того, что орел выпадет ровно k раз, можно найти по формуле:

Где C n k - число сочетаний из n элементов по k , которое считается по формуле:

Таким образом, для решения задачи с монетами нужны два числа: число бросков и число орлов. Чаще всего эти числа даны прямо в тексте задачи. Более того, не имеет значения, что именно считать: решки или орлы. Ответ получится один и тот же.

На первый взгляд, теорема кажется слишком громоздкой. Но стоит чуть-чуть потренироваться - и вам уже не захочется возвращаться к стандартному алгоритму, описанному выше.

Задача. Монету бросают четыре раза. Найдите вероятность того, что орел выпадет ровно три раза.

По условию задачи, всего бросков было n = 4. Требуемое число орлов: k = 3. Подставляем n и k в формулу:

Задача. Монету бросают три раза. Найдите вероятность того, что решка не выпадет ни разу.

Снова выписываем числа n и k . Поскольку монету бросают 3 раза, n = 3. А поскольку решек быть не должно, k = 0. Осталось подставить числа n и k в формулу:

Напомню, что 0! = 1 по определению. Поэтому C 3 0 = 1.

Задача. В случайном эксперименте симметричную монету бросают 4 раза. Найдите вероятность того, что орел выпадет больше раз, чем решка.

Чтобы орлов было больше, чем решек, они должны выпасть либо 3 раза (тогда решек будет 1), либо 4 (тогда решек вообще не будет). Найдем вероятность каждого из этих событий.

Пусть p 1 - вероятность того, что орел выпадет 3 раза. Тогда n = 4, k = 3. Имеем:

Теперь найдем p 2 - вероятность того, что орел выпадет все 4 раза. В этом случае n = 4, k = 4. Имеем:

Чтобы получить ответ, осталось сложить вероятности p 1 и p 2 . Помните: складывать вероятности можно только для взаимоисключающих событий. Имеем:

p = p 1 + p 2 = 0,25 + 0,0625 = 0,3125

В задачах по теории вероятностей, которые представлены в ЕГЭ номером №4, кроме , встречаются задачи на подбрасывание монеты и о бросках кубика. Их сегодня мы и разберем.

Задачи о подбрасывании монеты

Задача 1. Симметричную монету бросают дважды. Найдите вероятность того, что решка выпадет ровно один раз.

В таких задачах удобно выписать все возможные исходы, записывая их при помощи букв Р (решка) и О (орел). Так, исход ОР означает, что при первом броске выпал орел, а при втором – решка. В рассматриваемой задаче возможны 4 исхода: РР, РО, ОР, ОО. Благоприятствуют событию «решка выпадет ровно один раз» 2 исхода: РО и ОР. Искомая вероятность равна .

Ответ: 0,5.

Задача 2. Симметричную монету бросают трижды, Найдите вероятность того, что орел выпадет ровно два раза.

Всего возможны 8 исходов: РРР, РРО, РОР, РОО, ОРР, ОРО, ООР, ООО. Благоприятствуют событию «орёл выпадет ровно два раза» 3 исхода: РОО, ОРО, ООР. Искомая вероятность равна .

Ответ: 0,375.

Задача 3. Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнет игру с мячом. Команда «Изумруд» играет три матча с разными командами. Найдите вероятность того, что в этих играх «Изумруд» выиграет жребий ровно один раз.

Эта задача аналогична предыдущей. Пусть каждый раз выпадение решки означает выигрыш жребия «Изумрудом» (такое предположение не влияет на вычисление вероятностей). Тогда возможны 8 исходов: РРР, РРО, РОР, РОО, ОРР, ОРО, ООР, ООО. Благоприятствуют событию «решка выпадет ровно один раз» 3 исхода: РОО,ОРО,ООР. Искомая вероятность равна .

Ответ: 0,375.

Задача 4 . Симметричную монету бросают трижды. Найдите вероятность того, что наступит исход РОО (в первый раз выпадает решка, во второй и третий - орёл).

Как и в предыдущих задачах, здесь имеется 8 исходов: РРР, РРО, РОР, РОО, ОРР, ОРО, ООР, ООО. Вероятность наступления исхода РОО равна .

Ответ: 0,125.

Задачи о бросках кубика

Задача 5. Игральный кубик бросают дважды. Сколько элементарных исходов опыта благоприятствуют событию «сумма очков равна 8»?

Задача 6 . Одновременно бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 4 очка. Результат округлите до сотых.

Вообще, если бросают игральных костей (кубиков), то имеется равновозможных исходов. Столько же исходов получается, если один и тот же кубик бросают раз подряд.

Событию «в сумме выпало 4» благоприятствуют следующие исходы: 1 – 3, 2 – 2, 3 – 1. Их количество равно 3. Искомая вероятность равна .

Для подсчёта приближённого значения дроби удобно воспользоваться делением уголком. Таким образом, приблизительно равна 0,083…, округлив до сотых имеем 0,08.

Ответ: 0,08

Задача 7 . Одновременно бросают три игральные кости. Найдите вероятность того, что в сумме выпадет 5 очков. Результат округлите до сотых.

Исходом будем считать тройку чисел: очки, выпавшие на первой, второй и третьей игральной кости. Всего имеется равновозможных исходов. Событию «в сумме выпало 5» благоприятствуют следующие исходы: 1–1–3, 1–3–1, 3–1–1, 1–2–2, 2–1–2, 2–2–1. Их количество равно 6. Искомая вероятность равна . Для подсчёта приближённого значения дроби удобно воспользоваться делением уголком. Приблизительно получаем 0,027…, округлив до сотых, имеем 0,03.Источник “Подготовка к ЕГЭ. Математика. Теория вероятностей”. Под редакцией Ф.Ф. Лысенко, С.Ю. Кулабухова

В случайном эксперименте симметричную монету бросают...

В качестве предисловия.
Все знают, что монета имеет две стороны - орёл и решку.
Нумизматы считают, что монета имеет три стороны - аверс, реверс и гурт.
И среди тех, и среди других, мало кто знает, что такое симметричная монета. Зато об этом знают (ну, или должны знать:), те, кто готовится сдавать ЕГЭ.

В общем, в этой статье речь пойдёт о необычной монете, которая, к нумизматике никакого отношения не имеет, но, при этом, является самой популярной монетой среди школьников.

Итак.
Симметричная монета - это воображаемая математически идеальная монета без размера, веса, диаметра и пр. Как следствие, гурта у такой монеты тоже нет, то есть вот она-то действительно имеет только две стороны. Главное свойство симметричной монеты в том, что при таких условиях вероятность выпадения орла или решки абсолютно одинакова. А придумали симметричную монету для проведения мысленных экспериментов.
Самая популярная задача с симметричной монетой звучит так - "В случайном эксперименте симметричную монету бросают дважды (трижды, четырежды и т.д.). Требуется определить вероятность того, что одна из сторон выпадет определённое количество раз.

Ршение задачи с симметричной монетой

Понятно, что в результате броска монета упадёт либо орлом, либо решкой. Сколько раз - зависит от того, сколько бросков совершить. Вероятность выпадения орла или решки вычисляется делением количества удовлетворяющих условию исходов на общее количество возможных исходов.

Одн бросок

Здесь всё просто. Выпадет либо орёл, либо решка. Т.е. имеем два возможных исхода, один из которых нас удовлетворяет - 1/2=50%

Дваброска

За два броска могут выпасть:
два орла
две решки
орёл, затем решка
решка, затем орёл
Т.е. возможны всего четыре варианта. Задачи с более, чем одним броском, проще всего решать составлением таблицы возможных вариантов. Для простоты, обозначим орла цифрой "0", а решку цифрой "1". Тогда таблица возможных исходов будет выглядеть так:
00
01
10
11
Если, например, нужно найти вероятность того, что орёл выпадет один раз, требуется просто подсчитать количество подходящих вариантов в таблице - т.е. тех строк, где орёл встречается один раз. Таких строк две. Значит, вероятность выпадения одного орла в двух бросках симметричной монеты равна 2/4=50%
Вероятность того, что орёл в двух бросках выпадет дважды равна 1/4=25%

Три роска

Составляем таблицу вариантов:
000
001
010
011
100
101
110
111
Те, кто знаком с двоичным исчислением, понимают, к чему мы пришли. :) Да, это двоичные цифры от "0" до "7". Так проще не запутаться с вариантами.
Решим задачу из предыдущего пункта - вычислим вероятность того, что орёл выпадет один раз. Строк, где "0" встречается один раз имеется три. Значит, вероятность выпадения одного орла в трёх бросках симметричной монеты равна 3/8=37,5%
Вероятность того, что орёл в трёх бросках выпадет дважды равна 3/8=37,5%, т.е. абсолютно такая же.
Вероятность того, что орёл в трёх бросках выпадет трижды равна 1/8=12,5%.

Четыр броска

Составляем таблицу вариантов:
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
Вероятность того, что орёл выпадет один раз. Строк, где "0" встречается один раз имеется всего три, так же, как и в случае трёх бросков. Но, вариантов уже шестнадцать. Значит, вероятность выпадения одного орла в четырёх бросках симметричной монеты равна 3/16=18,75%
Вероятность того, что орёл в трёх бросках выпадет дважды равна 6/8=75%,.
Вероятность того, что орёл в трёх бросках выпадет трижды равна 4/8=50%.

Итак с увеличением количества бросков, принцип решения задачи совершенно не меняется - только, в соответствующей прогрессии, увеличивается количество вариантов.